Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain*

Author:

Fan Hong,Sun Yiman,Zhang Xiaojuan,Zhang Chengcheng,Li Xiangjun,Wang Yi

Abstract

To solve the problem that the magnetic resonance (MR) image has weak boundaries, large amount of information, and low signal-to-noise ratio, we propose an image segmentation method based on the multi-resolution Markov random field (MRMRF) model. The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales. The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm, and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation. The results are then segmented by the improved MRMRF model. In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model, it is proposed to introduce variable weight parameters in the segmentation process of each scale. Furthermore, the final segmentation results are optimized. We name this algorithm the variable-weight multi-resolution Markov random field (VWMRMRF). The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness, and can accurately and stably achieve low signal-to-noise ratio, weak boundary MR image segmentation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3