Author:
Cui Zhi-Wei,Guo Shen-Yan,Hui Yuan-Fei,Wang Ju,Han Yi-Ping
Abstract
We analytically and numerically study the local dynamical characteristics of the Bessel beams reflected from an air—glass interface near the Brewster angle. A Taylor series expansion based on the angular spectrum component is applied to correct the reflection coefficients near the Brewster angle. Using a hybrid angular spectrum representation and vector potential method, the explicit expressions for the electric and magnetic field components of the reflected Bessel beams are derived analytically under paraxial approximation. The local energy, momentum, spin, and orbital angular momentum of the Bessel beams upon reflection near the Brewster angle are examined numerically by utilizing a canonical approach. Numerical simulation results show that the properties of these dynamical quantities for the Bessel beams near Brewster angle incidence change abruptly, and are significantly affected by their topological charge, half-cone angle, and polarization state. The present study has its importance in understanding the dynamical aspects of optical beams with vortex structure and diffraction-free nature during the reflection process.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献