Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid*

Author:

Liu Qi,Yu Yu-Feng,Zhao Wen-Sheng,Li Hui

Abstract

We propose a low-cost compact microfluidic temperature sensor by virtue of the temperature-dependent permittivity of liquid. The sensor is composed of a coplanar waveguide (CPW) transmission line loaded with three resonators and a microfluidic plate with three channels. The resonant frequency of each resonator relies on the temperature-dependent dielectric property of liquid in corresponding channel, which therefore can be used to extract the temperature. The proposed sensor features a compact size and low cost since it requires only micro fluid volume instead of additional electronic components to produce significant frequency shift with changing temperature. Moreover, it exhibits decent accuracy and stability in a temperature sensing range from 30 °C to 95 °C. A theoretical analysis of the sensor is provided, followed by the detailed characterization method, and a prototype is designed, manufactured, and measured to verify the theoretical analysis.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrasensitive Edible Oil Sensor Based on Spiral SLSP Combined With Stepped Structure;IEEE Transactions on Instrumentation and Measurement;2024

2. Contact-Free, Passive, Electromagnetic Resonant Sensors for Enclosed Biomedical Applications: A Perspective on Opportunities and Challenges;ACS Sensors;2023-03-14

3. Water Antenna Based Passive Wireless Temperature Sensor;2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC);2022-05-16

4. Passive wireless temperature sensors for harsh environment;2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO);2020-12-07

5. High-performance plasmonic oblique sensors for the detection of ions;Nanotechnology;2020-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3