Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures

Author:

Huang Wenyu,Wang Cangmin,Liu Yichao,Wang Shaoting,Ge Weifeng,Qiu Huaili,Yang Yuanjun,Zhang Ting,Zhang Hui,Gao Chen

Abstract

Because of the wide selectivity of ferromagnetic and ferroelectric (FE) components, electric-field (E-field) control of magnetism via strain mediation can be easily realized through composite multiferroic heterostructures. Here, an MgO-based magnetic tunnel junction (MTJ) is chosen rationally as the ferromagnetic constitution and a high-activity (001)-Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-0.3PT) single crystal is selected as the FE component to create a multiferroic MTJ/FE hybrid structure. The shape of tunneling magnetoresistance (TMR) versus in situ E-fields imprints the butterfly loop of the piezo-strain of the FE without magnetic-field bias. The E-field-controlled change in the TMR ratio is up to –0.27% without magnetic-field bias. Moreover, when a typical magnetic field (∼ ±10 Oe) is applied along the minor axis of the MTJ, the butterfly loop is changed significantly by the E-fields relative to that without magnetic-field bias. This suggests that the E-field-controlled junction resistance is spin-dependent and correlated with magnetization switching in the free layer of the MTJ. In addition, based on such a multiferroic heterostructure, a strain-gauge factor up to approximately 40 is achieved, which decreases further with a sign change from positive to negative with increasing magnetic fields. This multiferroic hybrid structure is a promising avenue to control TMR through E-fields in low-power-consumption spintronic and straintronic devices at room temperature.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3