High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance

Author:

Gong Qian-Qian,Zhao Yun-Long,Zhang Qi,Hu Chun-Yong,Liu Teng-Fei,Zhang Hai-Feng,Yin Guang-Chao,Sun Mei-Ling

Abstract

The surface characteristics of ZnO were synthetically optimized by a self-designed simultaneous etching and W-doping hydrothermal method utilizing as-prepared ZnO nanorod (NR) array films as the template. Benefiting from the etching and regrowth process and the different structural stabilities of the various faces of ZnO NRs, the uniquely etched and W-doped ZnO (EWZ) nanotube (NT) array films with larger surface area, more active sites and better energy band structure were used to improve the photoelectrochemical (PEC) performance and the loading quality of CdS quantum dots (QDs). On the basis of their better surface characteristics, the CdS QDs were uniformly loaded on EWZ NT array film with a good coverage ratio and interface connection; this effectively improved the light-harvesting ability, charge transportation and separation as well as charge injection efficiency during the PEC reaction. Therefore, all the CdS QD-sensitized EWZ NT array films exhibited significantly enhanced PEC performance. The CdS/EWZ-7 composite films exhibited the optimal photocurrent density with a value of 12 mA⋅cm−2, 2.5 times higher than that of conventional CdS/ZnO-7 composite films under the same sensitization times with CdS QDs. The corresponding etching and optimizing mechanisms were also discussed.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3