Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule

Author:

Geng 耿 Yi-Zhao 轶钊,Lu 鲁 Li-Ai 丽爱,Jia 贾 Ning 宁,Zhang 张 Bing-Bing 冰冰,Ji 纪 Qing 青

Abstract

Microtubule catalyzes the mechanochemical cycle of kinesin, a kind of molecular motor, through its crucial roles in kinesin’s gating, ATPase and force-generation process. These functions of microtubule are realized through the kinesin-microtubule interaction. The binding site of kinesin on the microtubule surface is fixed. For most of the kinesin-family members, the binding site on microtubule is in the groove between α-tubulin and β-tubulin in a protofilament. The mechanism of kinesin searching for the appropriate binding site on microtubule is still unclear. Using the molecular dynamics simulation method, we investigate the interactions between kinesin-1 and the different binding positions on microtubule. The key non-bonded interactions between the motor domain and tubulins in kinesin’s different nucleotide-binding states are listed. The differences of the amino-acid sequences between α- and β-tubulins make kinesin-1 binding to the αβ groove much more favorable than to the βα groove. From these results, a two-step mechanism of kinesin-1 to discriminate the correct binding site on microtubule is proposed. Most of the kinesin-family members have the conserved motor domain and bind to the same site on microtubule, the mechanism may also be shared by other family members of kinesin.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3