Author:
Liu Hai-Fang,Wang Yun-Cai,Sang Lu-Xiao,Zhang Jian-Guo
Abstract
Autonomous Boolean networks (ABNs) have been successfully applied to the generation of random number due to their complex nonlinear dynamics and convenient on-chip integration. Most of the ABNs used for random number generators show a symmetric topology, despite their oscillations dependent on the inconsistency of time delays along links. To address this issue, we suggest an asymmetrical autonomous Boolean network (aABN) and show numerically that it provides large amplitude oscillations by using equal time delays along links and the same logical gates. Experimental results show that the chaotic features of aABN are comparable to those of symmetric ABNs despite their being made of fewer nodes. Finally, we put forward a random number generator based on aABN and show that it generates the random numbers passing the NIST test suite at 100 Mbits/s. The unpredictability of the random numbers is analyzed by restarting the random number generator repeatedly. The aABN may replace symmetrical ABNs in many applications using fewer nodes and, in turn, reducing power consumption.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献