Author:
Hu 胡 Zhiyao 知遥,Li 李 Qixian 其贤,Zhang 张 Xuanchen 轩晨,Zhang 张 He-Bin 贺宾,Huang 黄 Long-Gang 龙刚,Liu 刘 Yong-Chun 永椿
Abstract
Abstract
Atomic nonlinear interferometry has wide applications in quantum metrology and quantum information science. Here we propose a nonlinear time-reversal interferometry scheme with high robustness and metrological gain based on the spin squeezing generated by arbitrary quadratic collective-spin interaction, which could be described by the Lipkin–Meshkov–Glick (LMG) model. We optimize the squeezing process, encoding process, and anti-squeezing process, finding that the two particular cases of the LMG model, one-axis twisting and two-axis twisting outperform in robustness and precision, respectively. Moreover, we propose a Floquet driving method to realize equivalent time reverse in the atomic system, which leads to high performance in precision, robustness, and operability. Our study sets a benchmark for achieving high precision and high robustness in atomic nonlinear interferometry.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献