Improved nonlinear parabolized stability equations approach for hypersonic boundary layers*

Author:

Ma Shaoxian,Duan Yi,Huang Zhangfeng,Yao Shiyong

Abstract

The nonlinear parabolized stability equations (NPSEs) approach is widely used to study the evolution of disturbances in hypersonic boundary layers owing to its high computational efficiency. However, divergence of the NPSEs will occur when disturbances imposed at the inlet no longer play a leading role or when the nonlinear effect becomes very strong. Two major improvements are proposed here to deal with the divergence of the NPSEs. First, all disturbances are divided into two types: dominant waves and non-dominant waves. Disturbances imposed at the inlet or playing a leading role are defined as dominant waves, with all others being defined as non-dominant waves. Second, the streamwise wavenumbers of the non-dominant waves are obtained using the phase-locked method, while those of the dominant waves are obtained using an iterative method. Two reference wavenumbers are introduced in the phase-locked method, and methods for calculating them for different numbers of dominant waves are discussed. Direct numerical simulation (DNS) is performed to verify and validate the predictions of the improved NPSEs in a hypersonic boundary layer on an isothermal swept blunt plate. The results from the improved NPSEs approach are in good agreement with those of DNS, whereas the traditional NPSEs approach is subject to divergence, indicating that the improved NPSEs approach exhibits greater robustness.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3