Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels

Author:

Fan 樊 Ji-Hao 继豪,Xia 夏 Pei-Wen 沛文,Dai 戴 Di-Kang 迪康,Chen 陈 Yi-Xiao 一骁

Abstract

Entanglement-assisted quantum error correction codes (EAQECCs) play an important role in quantum communications with noise. Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender (Alice) and the receiver (Bob). It is usually assumed that the preshared ebits of Bob are error free. However, noise on these ebits is unavoidable in many cases. In this work, we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs. We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels. In quantum memory channels, we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory. Furthermore, we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different. In both asymmetric and memory quantum channels, we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3