Ab-initio calculations of bandgap tuning of In1–x Ga xy (y = N, P)alloys for optoelectronic applications

Author:

Rashid Muhammad,M Jamil,Q Mahmood,Ramay Shahid M,Mahmood A Asif,H M Ghaithan

Abstract

The III–V alloys and doping to tune the bandgap for solar cells and other optoelectronic devices has remained a hot topic of research for the last few decades. In the present article, the bandgap tuning and its influence on optical properties of In1–x Ga x N/P, where (x = 0.0, 0.25, 0.50, 0.75, and 1.0) alloys are comprehensively analyzed by density functional theory based on full-potential linearized augmented plane wave method (FP-LAPW) and modified Becke and Johnson potentials (TB-mBJ). The direct bandgaps turn from 0.7 eV to 3.44 eV, and 1.41 eV to 2.32 eV for In1–x Ga x N/P alloys, which increases their potentials for optoelectronic devices. The optical properties are discussed such as dielectric constants, refraction, absorption, optical conductivity, and reflection. The light is polarized in the low energy region with minimum reflection. The absorption and optical conduction are maxima in the visible region, and they are shifted into the ultraviolet region by Ga doping. Moreover, static dielectric constant ε 1(0) is in line with the bandgap from Penn’s model.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3