The n-type Si-based materials applied on the front surface of IBC-SHJ solar cells*

Author:

Bao Jianhui,Tao Ke,Lin Yiren,Jia Rui,Liu Aimin

Abstract

Abstract Interdigitated back contact silicon hetero-junction (IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures. The front surface field (FSF) layer composed of electric field passivation and chemical passivation has been proved to play an important role in IBC-SHJ solar cells. The electric field passivated layer n+-a-Si: H, an n-type Si alloy with carbon or oxygen in amorphous phase, is simulated in this study to investigate its effect on IBC-SHJ. It is indicated that the n+-a-Si: H layer with wider band gap can reduce the light absorption on the front side efficaciously, which hinders the surface recombination of photo-generated carriers and thus contributes to the improvement of the short circuit current density J sc. The highly doped n+-a-Si: H can result in the remakable energy band bending, which makes it outstanding in the field passivation, while it makes little contribution to the chemical passivation. It is noteworthy that when the electric field intensity exceeds 1.3 × 105 V/cm, the efficiency decrease caused by the inferior chemical passivation is only 0.16%. In this study, the IBC-SHJ solar cell with a front n+-a-Si: H field passivation layer is simulated, which shows the high efficiency of 26% in spite of the inferior chemical passivation on the front surface.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3