Author:
Tu Hong-Yu,Cheng Ji-Chao,Pan Gen-Cai,Han Lu,Duan Bin,Wang Hai-Yu,Chen Qi-Dai,Xu Shu-Ping,Dai Zhen-Wen,Pan Ling-Yun
Abstract
Following the gradual maturation of synthetic techniques for nanomaterials, exciton–plasmon composites have become a research hot-spot due to their controllable energy transfer through electromagnetic fields on the nanoscale. However, most reports ignore fluorescence resonance energy transfer (FRET) under electrostatic repulsion conditions. In this study, the FRET process is investigated in both electrostatic attraction and electrostatic repulsion systems. By changing the Au : quantum dot ratio, local-field induced FRET can be observed with a lifetime of ns and a fast component of hundreds of ps. These results indicate that the intrinsic transfer process can only elucidated by considering both steady and transient state information.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献