Author:
Xu Gui-Qiong,Meng Lei,Tu Deng-Qin,Yang Ping-Le
Abstract
Identifying influential nodes in complex networks is one of the most significant and challenging issues, which may contribute to optimizing the network structure, controlling the process of epidemic spreading and accelerating information diffusion. The node importance ranking measures based on global information are not suitable for large-scale networks due to their high computational complexity. Moreover, they do not take into account the impact of network topology evolution over time, resulting in limitations in some applications. Based on local information of networks, a local clustering H-index (LCH) centrality measure is proposed, which considers neighborhood topology, the quantity and quality of neighbor nodes simultaneously. The proposed measure only needs the information of first-order and second-order neighbor nodes of networks, thus it has nearly linear time complexity and can be applicable to large-scale networks. In order to test the proposed measure, we adopt the susceptible-infected-recovered (SIR) and susceptible-infected (SI) models to simulate the spreading process. A series of experimental results on eight real-world networks illustrate that the proposed LCH can identify and rank influential nodes more accurately than several classical and state-of-the-art measures.
Subject
General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献