A stochastic two-dimensional intelligent driver car-following model with vehicular dynamics

Author:

Qi Hong-Sheng,Ying Yu-Yan

Abstract

The law of vehicle movement has long been studied under the umbrella of microscopic traffic flow models, especially the car-following (CF) models. These models of the movement of vehicles serve as the backbone of traffic flow analysis, simulation, autonomous vehicle development, etc. Two-dimensional (2D) vehicular movement is basically stochastic and is the result of interactions between a driver’s behavior and a vehicle’s characteristics. Current microscopic models either neglect 2D noise, or overlook vehicle dynamics. The modeling capabilities, thus, are limited, so that stochastic lateral movement cannot be reproduced. The present research extends an intelligent driver model (IDM) by explicitly considering both vehicle dynamics and 2D noises to formulate a stochastic 2D IDM model, with vehicle dynamics based on the stochastic differential equation (SDE) theory. Control inputs from the vehicle include the steer rate and longitudinal acceleration, both of which are developed based on an idea from a traditional intelligent driver model. The stochastic stability condition is analyzed on the basis of Lyapunov theory. Numerical analysis is used to assess the two cases: (i) when a vehicle accelerates from a standstill and (ii) when a platoon of vehicles follow a leader with a stop-and-go speed profile, the formation of congestion and subsequent dispersion are simulated. The results show that the model can reproduce the stochastic 2D trajectories of the vehicle and the marginal distribution of lateral movement. The proposed model can be used in both a simulation platform and a behavioral analysis of a human driver in traffic flow.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3