Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal

Author:

Xiang Wenyu,Wang Yaping,Ji Weixiao,Hou Wenjie,Li Shengshi,Wang Peiji

Abstract

Searching for one-dimensional (1D) nanostructure with ferromagnetic (FM) half-metallicity is of significance for the development of miniature spintronic devices. Here, based on the first-principles calculations, we propose that the 1D CrN nanostructure is a FM half-metal, which can generate the fully spin-polarized current. The ab initio molecular dynamic simulation and the phonon spectrum calculation demonstrate that the 1D CrN nanostructure is thermodynamically stable. The partially occupied Cr-d orbitals endow the nanostructure with FM half-metallicity, in which the half-metallic gap (Δs) reaches up to 1.58 eV. The ferromagnetism in the nanostructure is attributed to the superexchange interaction between the magnetic Cr atoms, and a sizable magnetocrystalline anisotropy energy (MAE) is obtained. Moreover, the transverse stretching of nanostructure can effectively modulate Δs and MAE, accompanied by the preservation of half-metallicity. A nanocable is designed by encapsulating the CrN nanostructure with a BN nanotube, and the intriguing magnetic and electronic properties of the nanostructure are retained. These novel characteristics render the 1D CrN nanostructure as a compelling candidate for exploiting high-performance spintronic devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3