Experimental study on energy characteristics and ignition performance of recessed multichannel plasma igniter*

Author:

Cai Bang-Huang,Song Hui-Min,Jia Min,Wu Yun,Cui Wei,Huang Sheng-Fang

Abstract

In the extreme conditions of high altitude, low temperature, low pressure, and high speed, the aircraft engine is prone to flameout and difficult to start secondary ignition, which makes reliable ignition of combustion chamber at high altitude become a worldwide problem. To solve this problem, a kind of multichannel plasma igniter with round cavity is proposed in this paper, the three-channel and five-channel igniters are compared with the traditional ones. The discharge energy of the three igniters was compared based on the electric energy test and the thermal energy test, and ignition experiments was conducted in the simulated high-altitude environment of the component combustion chamber. The results show that the recessed multichannel plasma igniter has higher discharge energy than the conventional spark igniter, which can increase the conversion efficiency of electric energy from 26% to 43%, and the conversion efficiency of thermal energy from 25% to 73%. The recessed multichannel plasma igniter can achieve greater spark penetration depth and excitation area, which both increase with the increase of height. At the same height, the inlet flow helps to increase the penetration depth of the spark. The recessed multichannel plasma igniter can widen the lean ignition boundary, and the maximum enrichment percentage of lean ignition boundary can reach 31%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3