Long-range interacting Stark many-body probes with super-Heisenberg precision

Author:

Yousefjani Rozhin,He 何 Xingjian 行健,Bayat Abolfazl

Abstract

In contrast to interferometry-based quantum sensing, where interparticle interaction is detrimental, quantum many-body probes exploit such interactions to achieve quantum-enhanced sensitivity. In most of the studied quantum many-body probes, the interaction is considered to be short-ranged. Here, we investigate the impact of long-range interaction at various filling factors on the performance of Stark quantum probes for measuring a small gradient field. These probes harness the ground state Stark localization phase transition which happens at an infinitesimal gradient field as the system size increases. Our results show that while super-Heisenberg precision is always achievable in all ranges of interaction, the long-range interacting Stark probe reveals two distinct behaviors. First, by algebraically increasing the range of interaction, the localization power is enhanced and thus the sensitivity of the probe decreases. Second, as the interaction range becomes close to a fully connected graph its effective localization power disappears and thus the sensitivity of the probe starts to enhance again. The super-Heisenberg precision is achievable throughout the extended phase until the transition point and remains valid even when the state preparation time is incorporated in the resource analysis. As the probe enters the localized phase, the sensitivity decreases and its performance becomes size-independent, following a universal behavior. In addition, our analysis shows that lower filling factors lead to better precision for measuring weak gradient fields.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3