Ultra-broadband acoustic ventilation barrier based on multi-cavity resonators

Author:

Xu 许 Yu-Wei 雨薇,Guan 管 Yi-Jun 义钧,Wu 吴 Cheng-Hao 成昊,Ge 葛 Yong 勇,Si 司 Qiao-Rui 乔瑞,Yuan 袁 Shou-Qi 寿其,Sun 孙 Hong-Xiang 宏祥

Abstract

The numerical simulations and experimental results of an ultra-broadband acoustic ventilation barrier composed of periodic unit cells are reported in this paper. Based on multiple mechanisms, including sound absorption by eigenmodes of the unit cell and sound reflection by a plate structure on upper surface of the unit cell, a single-layer ventilation barrier with broadband sound reduction is designed, and its working bandwidth can reach about 1560 Hz. The experimental results accord well with the simulation results. Furthermore, two types of three-layer ventilation barriers are designed and demonstrated by using the unit cells with different values of a (the length of the hollow square region) and w (the width of the channel between the adjacent cavities), and the bandwidths of both ventilation barriers can increase to 3160 Hz and 3230 Hz, respectively. The designed barrier structures have the advantages of ultra-broadband sound reduction and ventilation, which paves the way to designing high-performance ventilation barriers for the applications in environmental protection and architectural acoustics.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3