Back interface passivation for ultrathin Cu(In,Ga)Se2 solar cells with Schottky back contact: A trade-off of electrical effects

Author:

Tu Ye,Li Yong,Yin Guanchao

Abstract

Back interface passivation reduces the back recombination of photogenerated electrons, whereas aggravates the blocking of hole transport towards back contact, which complicate the back interface engineering for ultrathin CIGSe solar cells with a Schottky back contact. In this work, theoretical explorations were conducted to study how the two contradictory electrical effects impact cell performance. For ultrathin CIGSe solar cells with a pronounced Schottky potential barrier (E h > 0.2 eV), back interface passivation produces diverse performance evolution trends, which are highly dependent on cell structures and properties. Since a back Ga grading can screen the effect of reduced recombination of photogenerated electrons from back interface passivation, the hole blocking effect predominates and back interface passivation is not desirable. However, when the back Schottky diode merges with the main pn junction due to a reduced absorber thickness, the back potential barrier and the hole blocking effect is much reduced on this occasion. Consequently, cells exhibit the same efficiency evolution trend as ones with an Ohmic contact, where back interface passivation is always advantageous. The discoveries imply the complexity of back interface passivation and provide guidance to manipulate back interface for ultrathin CIGSe solar on TCOs with a pronounced Schottky back contact.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3