Abstract
Abstract
We present the new absolute frequency measurement of ytterbium (171Yb) obtained at INRiM with the optical lattice clock IT-Yb1 against the cryogenic caesium (133Cs) fountain IT-CsF2, evaluated through a measurement campaign that lasted 14 months. Measurements are performed by either using a hydrogen maser as a transfer oscillator or by synthesizing a low-noise microwave for Cs interrogation using an optical frequency comb. The frequency of the 171Yb unperturbed clock transition
1
S
0
→
3
P0 results to be 518 295 836 590 863.44(14) Hz, with a total fractional uncertainty of
2.7
×
10
−
16
that is limited by the uncertainty of IT-CsF2. Our measurement is in agreement with the Yb frequency recommended by the Consultative Committee for Time and Frequency. This result confirms the reliability of Yb as a secondary representation of the second and is relevant to the process of redefining the second in the International System of Units on an optical transition.
Funder
European Metrology Program for Innovation and Research
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献