Higher-order Allan variance for atomic clocks of arbitrary order: mathematical foundation

Author:

Ishizaki Takayuki,Ichimura Taichi,Kawaguchi Takahiro,Yano Yuichiro,Hanado Yuko

Abstract

Abstract In this paper, we perform a time-domain analysis of the higher-order Allan variance for atomic clock models of arbitrary order. Adopting a standard atomic clock model where the time series of the clock reading deviation is expressed as a Wiener or integrated Wiener process, we define the higher-order Allan variance as the mean squared higher-order difference of the clock reading deviation. The main results of this paper are threefold. First, we prove that the higher-order difference operation of the clock reading deviation, which can be interpreted as a linear aggregation with binomial coefficients, is not only sufficient but also necessary for a resulting aggregated time series to be an independent and identically distributed Gaussian process. Second, we derive a complete analytical expression of the higher-order Allan variance, which consists of both time-dependent and time-independent terms. Third, we prove that the higher-order Allan variance is time-independent if and only if the order of difference operation is greater than or equal to the order of the atomic clock model.

Funder

Ministry of Internal Affairs and Communications

Publisher

IOP Publishing

Subject

General Engineering

Reference22 articles.

1. An optical lattice clock;Takamoto;Nature,2005

2. Single-ion atomic clock with 3×10−18 systematic uncertainty;Huntemann;Phys. Rev. Lett.,2016

3. Miniature trapped-ion frequency standard with 171 Yb+;Schwindt,2015

4. Chip-scale atomic devices;Kitching;Appl. Phys. Rev.,2018

5. The rubidium atomic clock and basic research;Camparo;Phys. Today,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clock Steering Techniques for Atomic Clocks of Arbitrary Order;2024 European Control Conference (ECC);2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3