Transient heating in fixed length optical cavities for use as temperature and pressure standards

Author:

Ricker J,Douglass K O,Syssoev S,Stone J,Avdiaj S,Hendricks J H

Abstract

Abstract Optical refractometry techniques enable realization of both pressure and temperature directly from properties of the gas. The NIST refractometer, a fixed length optical cavity (FLOC) has previously been evaluated for operation as pressure standard, and now in this paper, is evaluated for the feasibility of operation as a primary temperature standard as well. The challenge is that during operation, one cavity is filled with gas. Gas dynamics predicts that this will result in heating which in turn will affect the cavity temperature uniformity, impeding the ability to measure the gas temperature with sufficient accuracy to make the standard useful as a primary standard for temperature or pressure. Temperature uniformity across the refractometer must be less than 0.5 mK for measurements of the refractivity to be sufficiently accurate for the FLOC. This paper compares computer modeling to laboratory measurements, enabling us to validate the model to predict thermal behavior and to accurately determine the measurement uncertainty of the technique. The results presented in this paper show that temperature of the glass elements of the refractometer and ‘thermal-shell’ copper chamber are equivalent to within 0.5 mK after an equilibration time of 3000 s (when going from 1 kPa to 100 kPa). This finding enables measurements of the copper chamber to determine the gas temperature to within an uncertainty (k = 1) of 0.5 mK. Additionally, the NIST refractometer is evaluated for feasibility of operation as temperature standard.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3