Rejection sampling for Bayesian uncertainty evaluation using the Monte Carlo techniques of GUM-S1

Author:

Marschall ManuelORCID,Wübbeler GerdORCID,Elster Clemens

Abstract

Abstract Supplement 1 to the GUM (GUM-S1) extends the GUM uncertainty framework to non-linear functions and non-Gaussian distributions. For this purpose, it employs a Monte Carlo method that yields a probability density function for the measurand. This Monte Carlo method has been successfully applied in numerous applications throughout metrology. However, considerable criticism has been raised against the type A uncertainty evaluation of GUM-S1. Most of the criticism could be addressed by including prior information about the measurand which, however, is beyond the scope of GUM-S1. We propose an alternative Monte Carlo method that will allow prior information about the measurand to be included. The proposed method is based on a Bayesian uncertainty evaluation and applies a simple rejection sampling approach using the Monte Carlo techniques of GUM-S1. The range of applicability of the approach is explored theoretically and in terms of examples. The results are promising, leading us to conclude that many metrological applications could benefit from this approach. Software support is provided to ease its implementation.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3