Robustness tests for an optical time scale

Author:

Formichella V,Galleani L,Signorile G,Sesia I

Abstract

Abstract Optical clocks have reached such an impressive accuracy and stability that the future redefinition of the second will be probably based on an optical transition. Consequently, building time scales based on optical clocks has become a key problem. Unfortunately, optical clocks are still laboratory prototypes and are not yet capable of long times of autonomous operation. It is hence critical to understand the impact of this limited optical clock availability on the generated time scale. In this work, after describing a simple and effective optical time scale algorithm, based on the steering of a flywheel oscillator towards the optical clock, we investigate in detail the impact of the limited availability of the optical clock on the performances of the steering algorithm and of the generated time scale through numerical simulations. In particular, we simulate a time scale generated by a hydrogen maser (with a flicker floor of 5.5 × 10−16) steered towards an optical clock, by considering six different scenarios for the availability of the latter, spanning from the ideal one, i.e. continuous operation of the optical clock, to the worst one, i.e. non-uniformly distributed frequency measurements with long unavailability periods. The results prove that the steering algorithm is robust and effective despite its very simple implementation, and it is capable of very good performances in all the considered scenarios, provided that the hydrogen maser behaves nominally. Specifically, they show that a time scale with an accuracy of a few hundreds of picoseconds can be easily realized in the ideal scenario, whereas in a more realistic scenario, with one measurement per week only, the time accuracy is nonetheless of a few nanoseconds, competing with the best time scales currently realized worldwide. The performances degradation due to a non-nominal maser behaviour is also discussed.

Funder

EMPIR programme

Publisher

IOP Publishing

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3