A two-capillary viscometer for temperatures up to 473 K and pressures up to 100 MPa—operation and verification at low pressure

Author:

Khosravi Bahareh,Austegard AndersORCID,Løvseth Sigurd W,Stang H G Jacob,Jakobsen Jana P

Abstract

Abstract In this paper, we described the design and construction of a new two-capillary viscometer with several novel technical solutions for viscosity and density measurements. Our design, which is based on the low-pressure principle, featured numerous improvements in hardware and procedure that allowed the greatly extended range of pressure. The new design adopted a (2 × 2) capillary configuration, utilizing different combinations of four capillaries to enable viscosity measurements with a wide range of flow rates, temperatures, and pressures. The design temperature range is 213 K–473 K, and the pressure range is up to 100 MPa. The viscometer was specifically designed for measuring the viscosity of pure CO2 and CO2-rich mixtures, addressing the scarcity of data in conditions relevant to carbon capture, transport, and storage. Our facility is capable of viscosity measurements in different thermodynamic states; gaseous, liquid, supercritical, and critical regions. A commercial densimeter is integrated to measure density under the same temperatures and pressures. We aimed for a total uncertainty target of better than 0.03%. The performance of the viscometer was validated by measurements with pure CO2 at 298.15 K and zero density. We observed a deviation of less than 0.03% between the reference viscosity of CO2 of this work and accurately calculated data using ab initio quantum mechanics with a standard uncertainty of 0.2%. Our primary focus in this paper was to provide a detailed description of the design and construction of the apparatus, emphasizing improvements and introducing new solutions to other research groups in constructing similar instruments suitable for low- and high-pressure viscosity measurements with high accuracy.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3