Artifacts and errors in cross-spectrum phase noise measurements

Author:

Gruson Yannick,Rus Adrian,Rohde Ulrich L,Roth Alexander,Rubiola EnricoORCID

Abstract

Abstract This article deals with the erratic and inconsistent phase-noise spectra often seen in low-noise oscillators, whose floor is of the order of −180 dBc/Hz or less. Such oscillators are generally measured with two-channel instruments based on averaging two simultaneous and statistically independent measures. Our new method consists of inserting a dissipative attenuator between the oscillator under test and the phase-noise analyzer. The thermal noise of the attenuator introduces a controlled amount of phase noise. We compare the phase noise floor to the theoretical expectation with different values of the attenuation in small steps. The analysis reveals a negative bias (underestimation of phase noise) due to the thermal energy of the internal power splitter at the instrument input, and an uncertainty due to crosstalk between the two channels. In not-so-rare unfortunate cases, the bias results in a negative phase-noise spectrum, which is an obvious nonsense. Similar results are observed separately in three labs with instruments from the two major brands. We provide experimental evidence, full theory and suggestions to mitigate the problem, and a first attempt to assess the uncertainty. Our multiple-attenuators method provides quantitative information about the correlation phenomena inside the instrument.

Funder

Agence Nationale de la Recherche

Région Bourgogne and Franche Comté

Publisher

IOP Publishing

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultralow PM and AM Noise Generation With an Ensemble of Phase-Coherent Oscillators;IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control;2024-02

2. The Companion of Enrico’s Chart for Phase Noise and Two-Sample Variances;IEEE Transactions on Microwave Theory and Techniques;2023-07

3. Estimation of Phase Noise Transfer Function;Energies;2021-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3