Excitons in organic materials: revisiting old concepts with new insights

Author:

Valencia Ana MORCID,Bischof DanielORCID,Anhäuser SebastianORCID,Zeplichal Marc,Terfort Andreas,Witte GregorORCID,Cocchi CaterinaORCID

Abstract

Abstract The development of advanced experimental and theoretical methods for the characterization of excitations in materials enables revisiting established concepts that are sometimes misleadingly transferred from one field to another without the necessary disclaimers. This is precisely the situation that occurs for excitons in organic materials: different states of matter and peculiarities related to their structural arrangements and their environment may substantially alter the nature of the photo-induced excited states compared to inorganic semiconductors for which the concept of an exciton was originally developed. Adopting the examples of tetracene and perfluorotetracene, in this review, we analyze the nature of the excitations in the isolated compounds in solution, in the crystalline materials, and in melt. Using single crystals or films with large crystalline domains enables polarization-resolved optical absorption measurements, and thus the determination of the energy and polarization of different excitons. These experiments are complemented by state-of-the-art first-principles calculations based on density-functional theory and many-body perturbation theory. The employed methodologies offer unprecedented insight into the optical response of the systems, allowing us to clarify the single-particle character of the excitations in isolated molecules and the collective nature of the electron–hole pairs in the aggregated phases. Our results reveal that the turning point between these two scenarios is the quantum-mechanical interactions between the molecules: when their wave-function distributions and the Coulomb interactions among them are explicitly described in the adopted theoretical scheme, the excitonic character of the optical transitions can be captured. Semi-classical models accounting only for electrostatic couplings between the photo-activated molecules and their environment are unable to reproduce these effects. The outcomes of this work offer a deeper understanding of excitations in organic semiconductors from both theoretical and experimental perspectives.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Niedersächsisches Ministerium für Wissenschaft und Kultur

Publisher

IOP Publishing

Subject

Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3