Computational workflow for steric assessment using the electric field-derived size

Author:

Mroz Austin MORCID,Turcani Lukas,Jelfs Kim EORCID

Abstract

Abstract Molecular structure plays an important role in the selectivity and performance of catalysts. Understanding the impact of structural differences on catalyst performance via quantitative structure-selectivity relationships is key to developing high-performing catalytic systems. There are several methods that have been introduced to quantify steric contributions, including Tolman cone angles, Charton parameters, and A-values. While these have shown promise in predicting selectivity, they access similar, general steric contributions and are largely empirically derived. Alternatively, Sterimol parameters offer a specific multi-directional measure of steric bulk in the form of three vectors in units of distance. Recently, these parameters revealed strong correlations between structure and selectivity in asymmetric catalysis. Yet, despite their demonstrated performance, Sterimol parameters are commonly derived using van der Waals radii, which approximate molecular size using hard-spheres. This method may not accurately describe highly polarized systems. Recently, a new chemical system size metric based on the electric-field of a molecule was developed, which accesses the occupied space of a molecule. Here, we demonstrate that the electric field-derived Sterimol parameters reveal similar structure-selectivity relationships in asymmetric catalysis as conventional Sterimol parameters. Specifically, we present a computational workflow for calculating Sterimol parameters based on the size of a molecule’s electric field, and validate our method using several asymmetric catalysis reactions.

Funder

Royal Society

H2020 European Research Council

Publisher

IOP Publishing

Subject

Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3