Optical spectra of EGFR inhibitor AG-1478 for benchmarking DFT functionals

Author:

Alagawani SallamORCID,Vasilyev Vladislav,Wang FengORCID

Abstract

Abstract Optical spectroscopy (UV–vis and fluorescence spectroscopy) is sensitive to the chemical environment and conformation of fluorophores and therefore, serves as an ideal probe for the conformation and solvent responses. Tyrosine kinase inhibitors (TKI) such as AG-1478 of epidermal growth factor receptor when containing a quinazolinamine scaffold are fluorophores. It is, however, very important to benchmark density functional theory (DFT) method against optical spectral measurements, when time-dependent DFT is applied. In this study, the performance of up to 22 DFT functionals is benchmarked with respect to the measured optical spectra of AG-1478 in dimethyl sulfoxide (DMSO) solvent. It is discovered when combined with the 6–311++G(d, p) basis set, there are top seven functionals; B3PW91, B3LYP, B3P86, PBE1PBE, APFD, HSEH1PBE, and N12SX DFT-VXC functionals are identified as the top performers. Becke’s three-parameter exchange functional (B3) tends to generate accurate optical spectra to form the best three functionals, B3LYP, B3PW91 and B3P86. Specifically, B3PW91 was recommended for studying the optical properties of 4-quinazolinamine TKIs, B3LYP was found to be excellent for absorption spectrum, while B3P86 was identified as the best for emission spectrum. Any further corrections to B3LYP, such as CAM-B3LYP, LC-B3LYP, and B3LYP-D3 result in larger errors in the optical spectra of AG-1478 in DMSO solvent. These best three (B3Vc) functionals are reliable tools for optical properties of the TKIs and therefore the design of new agents with larger Stokes shift for medical image applications. To obtain reliable optical spectra for this class of 4-quinazolinamine based TKIs, it is important to include the electron correlation energy.

Funder

Swinburne University of Technology

Australian National University

Publisher

IOP Publishing

Subject

Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3