Topological nonsymmorphic insulator versus Dirac semimetal in KZnBi

Author:

Verma Rahul,Patra Bikash,Singh Bahadur

Abstract

Abstract KZnBi was discovered recently as a new three-dimensional Dirac semimetal with a pair of bulk Dirac fermions in contrast to the Z 2 trivial insulator reported earlier. In order to address this discrepancy, we have performed electronic structure and topological state analysis of KZnBi using the local, semilocal, and hybrid exchange-correlation (XC) functionals within the density functional theory framework. We find that various XC functionals, including the SCAN meta-GGA and hybrid functional with 25% Hartree–Fock (HF) exchange (HSE06), resolve a topological nonsymmorphic insulator state with the glide-mirror protected hourglass surface Dirac fermions. By carefully tuning the XC strength in modified Becke-Johnson (mBJ) potential, we recover the correct orbital ordering and Dirac semimetal state of KZnBi. We further show that increasing the default HF exchange in hybrid functional ( > 40%) can also capture the desired Dirac semimetal state with the correct orbital ordering of KZnBi. The calculated energy dispersion and carrier velocities of Dirac states are found to be in excellent agreement with the available experimental results. Our results demonstrate that KZnBi is a unique topological material where large XC effects are crucial to producing the Dirac semimetal state.

Funder

Tata Institute of Fundamental Research

Publisher

IOP Publishing

Subject

Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3