Aggregate formation in crystalline blends of α-sexithiophene and para-sexiphenyl

Author:

Bhagat ShubhamORCID,Leal William D,Majewski Marek B,Simbrunner JosefORCID,Hofer SebastianORCID,Resel RolandORCID,Salzmann IngoORCID

Abstract

Abstract Earlier reports on rod-like conjugated molecules of similar shape and size such as α-sexithiophene (6T) and para-sexiphenyl (6P) indicated mixed crystal growth in equimolar blends. The spectral overlap between the 6P fluorescence and 6T absorption might there give rise to resonant energy transfer between the two species. In marked contrast to H-type aggregation found for 6T bulk crystals, isolated monolayers of 6T as well as 6T monolayers sandwiched between 6P multilayers have been reported to show pronounced green (instead of red) fluorescence, which has been attributed to J-type aggregation. Here, we investigate whether these altered optical properties of 6T translate from the monolayer to a bulk equimolar blend with 6P. Insight into the mixed crystal structure for vacuum co-deposited films of 6T + 6P is provided by using synchrotron grazing-incidence x-ray diffraction on different substrates. By correlating the optical properties of the pure and the mixed systems using absorption and photoluminescence spectroscopy we identify the green emission known from 6T monolayers to prevail in the blend. Our analysis indicates the formation of aggregates which are promoted by the molecular arrangement in the mixed crystal structure highlighting that the remarkable optical properties of 6T/6P heterostacks translate into mixed crystalline films. This study underlines that tuning the opto-electronic properties of organic semiconductors by blending species of similar shape but distinct opto-electronic properties is a promising pathway to achieve altered material properties.

Funder

Austrian Science Fund

Government of Canada

Natural Sciences and Engineering Research Council of Canada

Fonds de Recherche du Québec-Nature et Technologies

Publisher

IOP Publishing

Subject

Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3