Improving the precision of work-function calculations within plane-wave density functional theory

Author:

Wang YiyuanORCID,J Laihonen Sari,Unge Mikael,Mostofi Arash AORCID

Abstract

Abstract Work function is a fundamental property of metals and is related to many surface-related phenomena of metals. Theoretically, it can be calculated with a metal slab supercell in density functional theory (DFT) calculations. In this paper, we discuss how the commensurability of atomic structure with the underlying fast Fourier transform (FFT) grid affects the accuracy of work function obtained from plane-wave pseudopotential DFT calculations. We show that the macroscopic average potential, which is an important property in work function calculations under the ‘bulk reference’ method, is more numerically stable when it is calculated with commensurate FFT grids than with incommensurate FFT grids. Due to the stability of the macroscopic average potential, work function calculated with commensurate FFT grids shows better convergence with respect to basis set size, vacuum length and slab thickness of a slab supercell. After we control the FFT grid commensurability issue in our work function calculations, we obtain well-converged work functions for Al, Pd, Au and Pt of (100), (110) and (111) surface orientations. For all the metals considered, the ordering of our calculated work functions of the three surface orientations agrees with experiment. Our findings reveal the importance of the FFT grid commensurability issue, which is usually neglected in practice, in obtaining accurate metal work functions, and are also meaningful to other DFT calculations which can be affected by the FFT grid commensurability issue.

Funder

Hitachi Energy Research

the Centre for Doctoral Training in Theory and Simulation of Materials at Imperial College London

China Scholarship Council

Thomas Young Centre

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3