Strain induced electronic transition in 1T′ MoTe2: high pressure Raman, x-ray diffraction, resistivity measurements and first principles theoretical studies

Author:

Ghosh BishnupadaORCID,Saha Pinku,Mukherjee Bidisha,Samanta Debabrata,Shukla GauravORCID,Mukherjee Goutam DevORCID

Abstract

Abstract A detailed high pressure study is carried out on 1T′  MoTe2 using x-ray diffraction (XRD) and Raman spectroscopy measurements up to about 30.5 GPa along with a room temperature resistivity measurement up to 14.3(4) GPa and density functional theory calculations. Though high-pressure XRD measurements show no structural transition, all the lattice parameters exhibit anomalous changes in the pressure region 8.4 to 12.7 GPa. The compressibility of the sample is found to be reduced by almost four times above 12.7 GPa with respect to that below 8.4 GPa. The anomalies in the Raman mode corresponding to the out of plane vibrations of Mo atoms sitting in the unit cell surface indicate a strong electron–phonon coupling possibly mediated by differential strain inside the unit cell. A rapid decrease in resistivity value up to about 7.0(2) GPa of pressure agrees well with the increase in the density of states (DOS) at the Fermi energy with pressure. Pressure evolution of band structure, as well as DOS at the Fermi level, shows an enhancement of the metallic character of the sample. First principle calculations show increased stress in the x and y directions compared to the z-direction with the application of pressure.

Funder

Ministry of Earth Sciences, Government of India

UGC, Govt of India

Department of Science and Technology, Government of India

INSPIRE

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3