Abstract
Abstract
The lattice vibrations (phonon modes) of crystals underpin a large number of material properties. The harmonic phonon spectrum of a solid is the simplest description of its structural dynamics and can be straightforwardly derived from the Hellman–Feynman forces obtained in a ground-state electronic structure calculation. The presence of imaginary harmonic modes in the spectrum indicates that a structure is not a local minimum on the structural potential-energy surface and is instead a saddle point or a hilltop, for example. This can in turn yield important insight into the fundamental nature and physical properties of a material. In this review article, we discuss the physical significance of imaginary harmonic modes and distinguish between cases where imaginary modes are indicative of such phenomena, and those where they reflect technical problems in the calculations. We outline basic approaches for exploring and renormalising imaginary modes, and demonstrate their utility through a set of three case studies in the materials sciences.
Funder
Engineering and Physical Sciences Research Council
UK Research and Innovation
Subject
Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献