Phonons from density-functional perturbation theory using the all-electron full-potential linearized augmented plane-wave method FLEUR *

Author:

Gerhorst Christian-RomanORCID,Neukirchen AlexanderORCID,Klüppelberg Daniel A,Bihlmayer GustavORCID,Betzinger Markus,Michalicek GregorORCID,Wortmann DanielORCID,Blügel StefanORCID

Abstract

Abstract Phonons are quantized vibrations of a crystal lattice that play a crucial role in understanding many properties of solids. Density functional theory provides a state-of-the-art computational approach to lattice vibrations from first-principles. We present a successful software implementation for calculating phonons in the harmonic approximation, employing density-functional perturbation theory within the framework of the full-potential linearized augmented plane-wave method as implemented in the electronic structure package FLEUR. The implementation, which involves the Sternheimer equation for the linear response of the wave function, charge density, and potential with respect to infinitesimal atomic displacements, as well as the setup of the dynamical matrix, is presented and the specifics due to the muffin-tin sphere centered linearized augmented plane-wave basis-set and the all-electron nature are discussed. As a test, we calculate the phonon dispersion of several solids including an insulator, a semiconductor as well as several metals. The latter are comprised of magnetic, simple, and transition metals. The results are validated on the basis of phonon dispersions calculated using the finite displacement approach in conjunction with the FLEUR code and the phonopy package, as well as by some experimental results. An excellent agreement is obtained.

Funder

Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie

Joint Virtual Laboratory of the Forschungszentrum Jülich and the French Alternative Energies and Atomic Energy Commission

European Centre of Excellence MaX

Bundesministerium für Bildung und Forschung

Helmholtz Platform for Research Software Engineering

Publisher

IOP Publishing

Subject

Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3