Abstract
Abstract
High performance computing is a powerful tool to accelerate the Kohn–Sham density functional theory calculations on modern heterogeneous supercomputers. Here, we describe a massively parallel implementation of large-scale linear-response time-dependent density functional theory (LR-TDDFT) to calculate the excitation energies and wave functions of solids with plane-wave basis set. We adopt a two-level parallelization strategy that combines the message passing interface with open multi-processing parallel programming to deal with the matrix operations and data communications of constructing and diagonalizing the LR-TDDFT Hamiltonian matrix. Numerical results illustrate that the LR-TDDFT calculations can scale up to 24 576 processing cores on modern heterogeneous supercomputers to study the excited state properties of bulky silicon systems containing thousands of atoms (4,096 atoms). We demonstrate that the LR-TDDFT calculations can be used to investigate the photoinduced charge separation of water molecule adsorption on rutile TiO2(110) surface from an excitonic perspective.
Funder
National Key Research and Development Program of China
Academic Leading Talents Training Program
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Chinese Academy of Sciences Pioneer Hundred Talents Program
Strategic Priority Research Program of Chinese Academy of Sciences
Anhui Initiative in Quantum Information Technologies
Research Start-Up Grants
Supercomputer Application Project Trail Funding from Wuxi Jiangnan Institute of Computing Technology
Subject
Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献