Cathodes pinpoints for the next generation of energy storage devices: the LiFePO4 case study

Author:

Maia Beatriz AroucaORCID,Gomes Beatriz MouraORCID,Guerreiro Antonio NunoORCID,Santos Raquel MiriamORCID,Braga Maria HelenaORCID

Abstract

Abstract There are still essential aspects regarding cathodes requiring a comprehensive understanding. These include identifying the underlying phenomena that prevent reaching the theoretical capacity, explaining irreversible losses, and determining the cut-off potentials at which batteries should be cycled. We address these inquiries by investigating the cell’s capacity and phase dynamics by looking into the transport properties of electrons. This approach underlines the crucial role of electrons in influencing battery performance, similar to their significance in other materials and devices such as transistors, thermoelectrics, or superconductors. We use lithium iron phosphate LFP as a case study to demonstrate that understanding the electrochemical cycling behavior of a battery cell, particularly a Li//LFP configuration, hinges on factors like the total local potentials used to calculate chemical potentials, electronic density of states (DOS), and charge carrier densities. Our findings reveal that the stable plateau potential difference is 3.42 V, with maximum charge and minimum discharge potentials at 4.12 V and 2.80 V, respectively. The study illustrates the dynamic formation of metastable phases at a plateau voltage exceeding 3.52 V. Moreover, we establish that determining the working chemical potentials of elements like Li and Al can be achieved by combining their workfunction and DOS analysis. Additionally, we shed light on the role of carbon black beyond conductivity enhancement. Through Density functional theory (DFT) calculations and experimental methods involving scanning Kelvin probe (SKP) and electrochemical analysis, we comprehensively examine various materials, including Li, C, Al, Cu, LFP, FePO4, Li0.25FePO4, polyvinylidene fluoride, and Li6PS5Cl. The insights derived from this study, which solely rely on electrical properties, have broad applicability to all cathodes and batteries. They provide valuable information for efficiently selecting optimal formulations and conditions for cycling batteries.

Funder

European Union

Recovery and Resilience Plan

Portuguese Foundation for Science and Technology

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3