Linear scaling approach for optical excitations using maximally localized Wannier functions

Author:

Merkel Konrad,Ortmann FrankORCID

Abstract

Abstract We present a theoretical method for calculating optical absorption spectra based on maximally localized Wannier functions, which is suitable for large periodic systems. For this purpose, we calculate the exciton Hamiltonian, which determines the Bethe–Salpeter equation for the macroscopic polarization function and optical absorption characteristics. The Wannier functions are specific to each material and provide a minimal and therefore computationally convenient basis. Furthermore, their strong localization greatly improves the computational performance in two ways: first, the resulting Hamiltonian becomes very sparse and, second, the electron–hole interaction terms can be evaluated efficiently in real space, where large electron–hole distances are handled by a multipole expansion. For the calculation of optical spectra we employ the sparse exciton Hamiltonian in a time-domain approach, which scales linearly with system size. We demonstrate the method for bulk silicon—one of the most frequently studied benchmark systems—and envision calculating optical properties of systems with much larger and more complex unit cells, which are presently computationally prohibitive.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3