Abstract
Abstract
Hexagonal boron nitride (h-BN) is nowadays an increasingly attractive material, especially for two-dimensional material applications, due to its intrisic properties. However, its properties are highly dependent on the used synthesis approach. The polymer derived ceramics (PDCs) route allows elaboration of h-BN with tailored textural and structural properties. Here, we demonstrate the interest of the PDCs pathway for the synthesis of h-BN. Growth of h-BN single crystals with crystal sizes of a few microns at relatively low temperature and atmospheric pressure is successfully achieved from borazine precursor using PDCs. The crystallization is improved by additivation of 5 wt% of Li3N to the pre-ceramic polymer. Furthermore, by coupling PDCs with gas pressure sintering, starting from the same pre-ceramic polymer and 25 wt% of Li3N, the crystal size is enlarged up to hundreds of microns. The fabricated single crystals of pure h-BN can then be exfoliated into h-BN nanosheets. Finally, by combining PDCs with atomic layer deposition, functional BN nano-/hetero-structures are successfully synthesized from highly structured sensitive templates, making this ALD process a promising alternative for fabricating functional BN nanostructures.
Funder
China Scholarship Council
H2020 Future and Emerging Technologies
Labex iMUST
Agence Nationale de la Recherche
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献