Abstract
Abstract
Computational materials science relies on simple, yet efficient, measures and indicators of the modeled materials’ properties. Ideally, the desired properties should be linked to such scalar quantities that can be obtained in polynomial time and efficiently integrated within automated high-throughput screening loops for screening and sorting out the evaluated materials to the desired categories. Here, we focus on the freestanding gapped 2D materials and scalar indicator of their band gap sensitivity to the presence of additional stacked 2D layer/s. The proposed measure uses only a freestanding model of a given material, and it is based on an automated integration of the electron density of frontier orbitals extending into the vacuum within the model unit cell. The usefulness and limitations of such an approach for materials pre-screening are demonstrated on a handful of 2D materials, like, e.g. MXenes, graphane, fluorographene, or, allotropes of phosphorus.
Funder
Grantová Agentura České Republiky
Ostravská Univerzita v Ostravě
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献