Mapping the magnetocaloric effect at the microscale on a ferromagnetic shape memory alloy with infrared thermography

Author:

Pereira Maria JORCID,Santos Tiago,Correia Rafael,Amaral João S,Amaral Vitor S,Fabbrici Simone,Albertini Franca

Abstract

Abstract An innovative study of the magnetocaloric effect (MCE) was performed by mapping the effect based on direct measurements of the temperature change during magnetic field cycles with microscopic resolution (85 μm) on a Co-doped Ni–Mn–Ga bulk sample using infrared thermography on the whole sample. The MCE maps were constructed for different sample temperatures (T sample), cycling both on heating (from 272.8 K up to T sample, with T sample ⩽ 327.0 K) and on cooling (from 340.0 K down to T sample, with T sample ⩾ 266.8 K), cycling a 1.2 T magnetic field at each T sample value. The MCE maps were calculated to evaluate the amplitude of the effect at the microscale for all T sample values. This allows to analyze the contribution of each micrometric portion of the sample to the spatially heterogeneous behavior that was found. Significant differences of the MCE on heating and cooling are present associated to inhomogeneity dynamics, mostly near the structural transformation. The amplitude of the MCE and its inhomogeneity are both much more pronounced on the heating process. On the cooling process the effect behaves quite homogeneously since the structural transformation already occurred during the cooling to reach T sample. The behavior of the MCE at selected map coordinates was scrutinized, revealing significant differences amongst sample locations. Moreover, the extreme amplitudes of MCE registered for diverse micro-regions occur at different temperatures, suggesting that the structural transformation occurs at varying temperatures and with different magnitudes. The study innovates by constructing MCE maps to evaluate minority behaviors in the MCE in contrast with the average behavior of the effect. This study displays the capability to discriminate the behavior of the transformation at the microscale.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3