Photonics design theory enhancing light extraction efficiency in quantum dot light emitting diodes

Author:

Othman Diyar Mousa,Weinstein Julia AORCID,Lyu Quan,Hou BoORCID

Abstract

Abstract The external quantum efficiency (EQE) of quantum dot light emitting diodes (QLEDs) needs improvement for more power-efficient devices. One of the main limitations is the low light extraction efficiency (LEE). Generally, only 20% of the light that is generated inside the emissive layer makes its way out of the device into air, with the rest being lost to waveguide and substrate modes and surface plasmon polaritons. Different photonics structures have been previously tested to help extract the light that is trapped inside the device. Here we report a photonics design which is a combination of nanopillars and grating structures for improving the LEE of QLEDs. The effect of changing the nanopillar height, radius and material has been studied. It was found that ZnO nanopillars of 500 nm pitch, 200 nm height and 400 nm width alongside 150 nm width and pitch grating structure can increase the LEE at 460 nm by 50% and at 640 nm by 20%. It was also found that different materials can help extract light at different wavelengths. TiO2 nanopillars increased the extraction efficiency at ∼590 nm region which was not observed by the other materials. As around 19% of the world’s electricity consumption is due to lighting applications, increasing the LEE can significantly reduce the power consumption.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Reference59 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3