Low-voltage polymer transistors on hydrophobic dielectrics and surfaces

Author:

Kraft UlrikeORCID,Nikolka Mark,Wang Ging‐Ji Nathan,Kim Yeongin,Pfattner RaphaelORCID,Alsufyani Maryam,McCulloch Iain,Murmann Boris,Bao Zhenan

Abstract

Abstract A set of unique features, including large-area solution processing on flexible and stretchable substrates, make polymer semiconductors a promising material choice for a range of state-of-the-art applications in electronics, optoelectronics and sensing. Yet, an inherent weakness of polymer semiconductors remains their low dielectric constants, increasing their susceptibility toward unscreened dipoles. These dipoles are particularly prevalent at polymer-dielectric interfaces with high-k dielectrics, which are essential for the operation of devices such as low-voltage field-effect transistors. This shortcoming can be addressed by using self-assembled monolayers (SAMs) to passivate surfaces that impact charge transport. However, SAM-treatment also increases the hydrophobicity of surfaces and therefore poses a challenge for subsequent solution processing steps and complex packaging of devices. Here, we report low-voltage polymer transistors processed by spin coating of the polymer semiconductors on highly hydrophobic SAM-treated aluminum and hafnium oxide dielectrics (contact angles >100) through fine-tuning of the interfacial tension at the polymer-dielectric interface. This approach enables the processing and detailed characterization of near-amorphous (indacenodithiophene-cobenzothiadiazole) as well as semicrystalline (poly(2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)diketopyrrolo[3,4-c]pyrrole-1,4-dione-alt-thieno[3,2-b]thiophen)) polymer semiconductors. We demonstrate polymer transistors that exhibit high on-currents and field-independent, charge carrier mobilities of 0.8 cm2 V−1s−1 at low operating voltages (<3 V).

Funder

Alexander von Humboldt-Stiftung

European Commission

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3