Abstract
Abstract
Three-dimensional printing has risen in recent years as a promising approach that fast-tracked the biofabrication of tissue engineering constructs that most resemble utopian tissue/organ replacements for precision medicine. Additionally, by using human-sourced biomaterials engineered towards optimal rheological proprieties of extrudable inks, the best possible scaffolds can be created. These can encompass native structure and function with a low risk of rejection, enhancing overall clinical outcomes; and even be further optimized by engaging in information- and computer-driven design workflows. This paper provides an overview of the current efforts in achieving ink’s necessary rheological and print performance proprieties towards biofabrication from human-derived biomaterials. The most notable step for arranging such characteristics to make biomaterials inks are the employed crosslinking strategies, for which examples are discussed. Lastly, this paper illuminates the state-of-the-art of the most recent literature on already used human-sourced inks; with a final emphasis on future perspectives on the field.
Funder
H2020 Industrial Leadership
Agence Nationale de la Recherche
Fundação para a Ciência e a Tecnologia
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献