Pipelines for automating compliance-based elimination and extension (PACE2): a systematic framework for high-throughput biomolecular materials simulation workflows

Author:

Mushnoori Srinivas C,Zang Ethan,Banerjee Akash,Hooten Mason,Merzky Andre,Turilli Matteo,Jha Shantenu,Dutt MeenakshiORCID

Abstract

Abstract The formation of biomolecular materials via dynamical interfacial processes, such as self-assembly and fusion, for diverse compositions and external conditions can be efficiently probed using ensemble Molecular Dynamics (MD). However, this approach requires many simulations when investigating a large composition phase space. In addition, there is difficulty in predicting whether each simulation will yield biomolecular materials with the desired properties or outcomes and how long each simulation will run. These difficulties can be overcome by rules-based management systems, including intermittent inspection, variable sampling, and premature termination or extension of the individual MD simulations. Automating such a management system can significantly improve runtime efficiency and reduce the burden of organizing large ensembles of MD simulations. To this end, a computational framework, the Pipelines for Automating Compliance-based Elimination and Extension (PACE2), is proposed for high-throughput ensemble biomolecular materials simulations. The PACE2 framework encompasses Candidate pipelines, where each pipeline includes temporally separated simulation and analysis tasks. When a MD simulation is completed, an analysis task is triggered, which evaluates the MD trajectory for compliance. Compliant simulations are extended to the next MD phase with a suitable sample rate to allow additional, detailed analysis. Non-compliant simulations are eliminated, and their computational resources are reallocated or released. The framework is designed to run on local desktop computers and high-performance computing resources. Preliminary scientific results enabled by the use of PACE2 framework are presented, which demonstrate its potential and validates its function. In the future, the framework will be extended to address generalized workflows and investigate composition-structure-property relations for other classes of materials.

Funder

ACCESS

National Science Foundation

Division of Materials Research

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3