Investigation of improvement in stability and power conversion efficiency of organic solar cells fabricated by incorporating carbon nanostructures in device architecture

Author:

Subramanyam B V R S,Mahakul Prakash Chandra,Sa Kadambinee,Raiguru Jagatpati,Mahanandia PitamberORCID

Abstract

Abstract Carbon nanotubes (CNTs) along with reduced graphene oxide (RGO) are synthesized using modest methods and their composites with the polymers PEDOT:PSS and P3HT are prepared using an easy solution method. An attractive improvement in the composites’ physical properties with wt% increase of the filler material is observed, encouraging their applications in the fabrication of organic solar cells (OSCs). Using the composites in appropriate layers of the device architecture, OSCs have been fabricated by spin coating, and the incorporation of filler CNTs and RGO has been observed to result in considerable improvement in the power conversion efficiency (PCE) of all OSCs. To study the stability of the devices, the electrical properties of the OSCs have been periodically investigated in two different environments to understand the impact of both intrinsic and extrinsic degradation. The incorporation of filler carbon nanomaterials has been noticed to be successful in significantly prolonging the stability of the OSCs while maintaining the augmentation in PCE. For the best performing devices, the incorporation of CNTs and RGO has enhanced the PCE by 12.52% and 13.21% and improved the device lifetime by 37.31% and 43.23%, respectively, compared to the reference device. The results discussed in this report are greatly promising for the large scale consideration of a pioneering role of organic materials in numerous optoelectronic devices from a new and innovative perception assisted by the application of carbon-based nanomaterials.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3