Abstract
Abstract
We investigate the effect of spin–orbit interaction on the intra- and interdot particle dynamics of a double quantum dot (QD) under ac electric fields. The former is modeled as an effective ac magnetic field that produces electric-dipole spin resonance transitions, while the latter is introduced via spin-flip tunneling amplitudes. We observe the appearance of non-trivial spin-polarized dark states (DSs), arising from an ac-induced interference between photo-assisted spin-conserving and spin-flip tunneling processes. These DSs can be employed to precisely measure the spin–orbit coupling in QD systems. Furthermore, we show that the interplay between photo-assisted transitions and spin-flip tunneling enables the system to operate as a highly tunable spin filter. Finally, we investigate the operation of the system as a resonant flopping-mode qubit for arbitrary ac voltage amplitudes, allowing for high tunability and enhanced qubit control possibilities.
Funder
Ministerio de Universidades, Gobierno de España
Consejo Superior de Investigaciones Científicas
Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España
Deutsche Forschungsgemeinschaft
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献