Abstract
Abstract
We deform representative volume elements of amorphous carbon obtained from melt-quenches in molecular dynamics calculations using bond-order and machine learning interatomic potentials. A Drucker-Prager law with a zero-pressure flow stress of 41.2 GPa and an internal friction coefficient of 0.39 describes the deviatoric stress during flow as a function of pressure. We identify the mean coordination number as the order parameter describing this flow surface. However, a description of the dynamical relaxation of the quenched samples towards steady-state flow requires an additional order parameter. We suggest an intrinsic strain of the samples and present equations for its evolution. Our results provide insights into rehybridization and pressure dependence of friction between coated surfaces as well as routes towards the description of amorphous carbon in macroscale models of deformation.
Funder
Gauss Center for Supercomputing e.V.
Deutsche Forschungsgemeinschaft
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献