Phoebe: a high-performance framework for solving phonon and electron Boltzmann transport equations

Author:

Cepellotti AndreaORCID,Coulter JenniferORCID,Johansson Anders,Fedorova Natalya SORCID,Kozinsky BorisORCID

Abstract

Abstract Understanding the electrical and thermal transport properties of materials is critical to the design of electronics, sensors, and energy conversion devices. Computational modeling can accurately predict material properties but, in order to be reliable, requires accurate descriptions of electron and phonon states and their interactions. While first-principles methods are capable of describing the energy spectrum of each carrier, using them to compute transport properties is still a formidable task, both computationally demanding and memory intensive, requiring integration of fine microscopic scattering details for estimation of macroscopic transport properties. To address this challenge, we present Phoebe—a newly developed software package that includes the effects of electron–phonon, phonon–phonon, boundary, and isotope scattering in computations of electrical and thermal transport properties of materials with a variety of available methods and approximations. This open source C++ code combines MPI-OpenMP hybrid parallelization with GPU acceleration and distributed memory structures to manage computational cost, allowing Phoebe to effectively take advantage of contemporary computing infrastructures. We demonstrate that Phoebe accurately and efficiently predicts a wide range of transport properties, opening avenues for accelerated computational analysis of complex crystals.

Funder

Harvard Climate Change Solutions Fund

Aker Scholarship

Star Friedman Fund for Promising Scientific Research

Department of Energy Computational Science Graduate Fellowship

Harvard Quantum Initiative

TACC

Swiss National Science Foundation

NSF

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3